
Sharing is caring: How to make the
most of your GPUs (part 1 - time-
slicing)
July 2, 2024 Carlos Camacho, Kevin Pouget, David Gray, Will McGrath, Red Hat
Performance Team 6-minute read

As artificial intelligence (AI) applications continue to advance, organizations often face a
common dilemma: a limited supply of powerful graphics processing unit (GPU) resources,
coupled with an increasing demand for their utilization. In this article, we'll explore various
strategies for optimizing GPU utilization via oversubscription across workloads in Red Hat
OpenShift AI clusters. OpenShift AI is an integrated MLOps platform for building, training,
deploying and monitoring predictive and generative AI (GenAI) models at scale across hybrid
cloud environments.

GPU oversubscription is like "carpooling" for your GPU – you’re getting more people (processes)
into the same car (GPU) to use it more efficiently. This approach helps you get more throughput,

Artificial intelligence Data science Containers

< Back to all posts

Menu

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

1 of 17 10/20/25, 1:37 PM

https://www.redhat.com/en/authors/carlos-camacho
https://www.redhat.com/en/authors/carlos-camacho
https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/authors/david-gray-author-red-hat-blog
https://www.redhat.com/en/authors/david-gray-author-red-hat-blog
https://www.redhat.com/en/authors/will-mcgrath
https://www.redhat.com/en/authors/will-mcgrath
https://www.redhat.com/en/authors/red-hat-performance-team
https://www.redhat.com/en/authors/red-hat-performance-team
https://www.redhat.com/en/authors/red-hat-performance-team
https://www.redhat.com/en/authors/red-hat-performance-team
https://www.redhat.com/en/products/ai/openshift-ai
https://www.redhat.com/en/products/ai/openshift-ai
https://www.redhat.com/en/products/ai/openshift-ai
https://www.redhat.com/en/products/ai/openshift-ai
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:75501#rhdc-search-listing
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:75501#rhdc-search-listing
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:8401#rhdc-search-listing
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:8401#rhdc-search-listing
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:9001#rhdc-search-listing
https://www.redhat.com/en/blog?f[0]=taxonomy_topic_tid:9001#rhdc-search-listing
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en/blog
https://www.redhat.com/en
https://www.redhat.com/en
https://www.redhat.com/en
https://www.redhat.com/en
https://www.redhat.com/en

keeping the overall system latency under specific service level agreements (SLAs), and reducing
the time the resources are not used. Of course, there can be some traffic jams (too many
processes racing for resources), but with the right strategies, and the understanding of your
workloads, you can keep the systems consistently outperforming.

This is a series of articles where we will review the different strategies supported by the NVIDIA
GPU operator to oversubscribe the available GPU resources. These strategies are tested in the
context of the inference service distributed as part of the latest version of OpenShift AI, Text
Generation Inference Service (TGIS).

The mainstream three strategies supported by NVIDIA's GPU Operator to oversubscribe GPUs
are:

• : Allowing multiple workloads to share GPUs by alternating execution time

• : dividing GPUs into isolated and static instances for
concurrent usage by different applications

• : optimizing the execution of parallel GPU workloads by
enabling concurrent kernel execution

There is a set of assumptions for the development of this article:

• The experiments and configurations are applied to an OpenShift 4.15 cluster

• The GPU used for the experiments is an NVIDIA A100 40GB PCIe

• The software stack deployed to run the experiments is Red Hat OpenShift AI 2.9 with the
latest version of the NVIDIA GPU operator

• Red Hat OpenShift AI v2.X to serve models from the flan-t5 LLM family

In this first article we will look at time-slicing, how it is configured, how the models behave when
doing inference with time-slicing enabled and when you might want to use it.

The simplest approach for sharing an entire GPU is time-slicing, which is akin to giving each
process a turn at using the GPU, with every process scheduled to use the GPU in a round-robin
fashion. This method provides access for those slices, but there is no control over how many
resources a process can request, leading to potential out-of-memory issues if we don't control or
understand the workloads involved.

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

2 of 17 10/20/25, 1:37 PM

The NVIDIA GPU operator can be configured to use the Kubernetes device plugin to manage
GPU resources efficiently within the cluster. The NVIDIA GPU operator streamlines the
deployment and management of GPU workloads by automating the setup of the necessary
drivers and runtime components. With the Kubernetes device plugin, the operator integrates with
Kubernetes’ resource management capabilities, allowing for dynamic allocation and deallocation
of GPU resources as needed by the workloads.

The Kubernetes device plugin is the interface used to apply the configuration changes in the
nodes containing GPUs. When configuring the NVIDIA GPU operator, the device plugin is
responsible for advertising the availability of GPU resources to the Kubernetes API, making sure
that these resources can be requested by pods and assigned accordingly. These changes can be
applied per node.

The following custom resource (CR) example defines how we will be sharing the GPU in a config
map (this won't have any effect on the cluster at the moment). In the CR we specify the sharing
strategy for a specific ‘key’—this key is the GPU model ‘NVIDIA-A100-PCIE-40GB’—and we
allocate seven replicas for that resource.

cat << EOF | oc apply -f -

apiVersion: v1

kind: ConfigMap

metadata:

 name: time-slicing-config

 namespace: nvidia-gpu-operator

data:

 NVIDIA-A100-PCIE-40GB: |-

 version: v1

 sharing:

 timeSlicing:

 resources:

 - name: nvidia.com/gpu

 replicas: 7

EOF

With the resource created, we need to patch the initial ClusterPolicy from the GPU operator
called . The changes need to be applied to the section.

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

3 of 17 10/20/25, 1:37 PM

oc patch clusterpolicy \

 gpu-cluster-policy \

 -n nvidia-gpu-operator \

 --type merge \

 -p '{"spec": {"devicePlugin": {"config": {"name": "time-slicing-config"}}}}'

To make sure the resources are configured correctly, we label a specific node stating that
the should point to the configuration we created in the previous steps.
This means also that the configuration can be applied on a per node basis.

oc label \

--overwrite node this-is-your-host-name.example.com \

nvidia.com/device-plugin.config=NVIDIA-A100-PCIE-40GB

After a few minutes, we can see that the GPU operator reconfigured the node to use time-
slicing. We can verify that by running:

oc get node \

--selector=nvidia.com/gpu.product=NVIDIA-A100-PCIE-40GB \

-o json | jq '.items[0].status.capacity'

The output should look like:

{

"cpu": "128",

"ephemeral-storage": "3123565732Ki",

"hugepages-1Gi": "0",

"hugepages-2Mi": "0",

"memory": "527845520Ki",

"nvidia.com/gpu": "7",

"pods": "250"

}

That means we have seven slices of the GPU ready to be used, identified as
.

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

4 of 17 10/20/25, 1:37 PM

Now that we configured time slicing, let’s compare the performance of an inference workload
when the GPU is used by only one replica (not shared) and when we allocate the GPU to multiple
replicas of the same inference service (shared with time-slicing).

Red Hat’s Performance and Scale (PSAP) team created llm-load-test, a tool for benchmarking
the performance of large language models (LLMs). Reproducibility is critical when
benchmarking, and llm-load-test helps users evaluate performance, enabling better consistency
and reliability for LLMs across different environments. By providing a structured framework for
performance testing, llm-load-test enables users to understand how their models behave under
various loads, helping to identify potential bottlenecks and areas for optimization.

In this experiment we will be measuring the throughput and latency of an LLM as the number of
parallel queries increases. We will query an OpenShift AI inference service endpoint (TGIS
standalone), where an LLM from the flan-t5 family (flan-t5-base) was loaded. Once OpenShift
AI has been installed, and the inference service is up and running, we should get a valid URL
where we can ask the model for inference.

The first step is to download the latest version of :

git clone https://github.com/openshift-psap/llm-load-test.git

cd llm-load-test

Once in the root folder of the project we need to adjust the configuration YAML file. The
following is an abstract of the example configuration file (config.yaml) with the parameters that
will be modified for this article.

dataset:

 file: "datasets/openorca_large_subset_011.jsonl"

 max_queries: 1000

 min_input_tokens: 0

 max_input_tokens: 1024

 max_output_tokens: 256

 max_sequence_tokens: 1024

load_options:

 type: constant #Future options: loadgen, stair-step

 concurrency: 1

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

5 of 17 10/20/25, 1:37 PM

https://www.redhat.com/en/blog/red-hat-performance-and-scale-engineering
https://www.redhat.com/en/blog/red-hat-performance-and-scale-engineering
https://github.com/openshift-psap/llm-load-test
https://github.com/openshift-psap/llm-load-test

 duration: 600

plugin: "tgis_grpc_plugin"

grpc/http

 use_tls: True

 streaming: True

 model_name: "flan-t5-base"

 host: "route.to.host"

 port: 443

In the case of these experiments, we use a mix of:

• Concurrency: 1, 2, 4, 8, 16, 32 and 64 virtual users. This is the number of parallel queries
 will run against the API endpoint.

• Duration: 100 seconds. This is the time where will run.

• Use tls: True. This is to make sure that we will query a TLS endpoint.

• Max sequence tokens: 480. This is the total maximum number of tokens from both the input
and the output when querying the endpoint.

• Max input tokens: 200. This is the maximum number of tokens in the input when querying the
endpoint.

Now we run to get the benchmark results from the endpoint:

python3 load_test.py -c my_custom_config.yaml

Once the tests finish the output should look like:

{

 "results":[],

 "config":{

 "load_options": {

 "concurrency": <value>,

 },

 "summary":{

 "tpot": {

 "percentile_95": <value>,

 },

 "throughput": <value>,

 }

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

6 of 17 10/20/25, 1:37 PM

}

Where we will be focusing on getting the throughput, time-per-output-tokens (TPOT, percentile
95), and the concurrency values for each test to show how flan-t5-base behaves.

To describe the results we will showcase throughput (x-axis), with respect to the time-per-
output-tokens (y-axis), over the different amounts of virtual users used in to
query the endpoints.

Figure 1 shows that the inference service limit is 16 virtual users, after that, the TPOT latency
spikes to values over the boundary SLA of 55 milliseconds per token (this 55ms. boundary
ensures that the interaction feels immediate and natural, closely mimicking human conversation,
higher values might disrupt the flow of interaction, leading to frustration and a poor user
experience). The maximum throughput value is ~980 tokens per second.

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

7 of 17 10/20/25, 1:37 PM

Now let’s introduce time-slicing results. Figure 2 shows different configurations of virtual users,
where for 1 and 2 replicas, the inference service latency spikes when the virtual users number is
over 16, although the throughput for 2 replicas is ~2000 tokens per second, which is almost twice
as many as 1 replica. For the experiments with 4 and 8 replicas of the inference service, we’re able
to process 32 and 64 virtual users without the previously described spike in the latency values.
There is also an increase in the throughput, but it is not as dramatic as when we compared 1 and 2
replicas from the same inference service. With 8 replicas and 64 virtual users, the load per replica
should be ~4 virtual users. This pushes the maximum throughput over 2000 tokens per second
without hitting any out-of-memory issues and operates under the SLA of 55 milliseconds.

This small test demonstrates that when sizing the infrastructure to run specific workloads it is
crucial to understand the resources they need to run, so you can configure and decide the best
strategy to maximize the performance of any application running on the cluster.

When should you use time-slicing as an effective policy for oversubscribing the GPUs?

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

8 of 17 10/20/25, 1:37 PM

• When you need to deploy several small models

• When you know how many resources the models will use

• When the workloads are controlled

• When you need a simple configuration to start allocating workloads

• When you're using it for development, testing and staging environments

• When you're using it for workloads without strict latency requirements

In the second part of this series we will review MIG partitioning, showcasing where it can be
useful and the benefits and current drawbacks of that approach.

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

9 of 17 10/20/25, 1:37 PM

https://www.redhat.com/en/authors/carlos-camacho
https://www.redhat.com/en/authors/carlos-camacho

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

10 of 17 10/20/25, 1:37 PM

https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/authors/kevin-pouget
https://www.redhat.com/en/authors/david-gray-author-red-hat-blog
https://www.redhat.com/en/authors/david-gray-author-red-hat-blog

Sharing is caring: How to make the most of your GPUs (part 1... https://www.redhat.com/en/blog/sharing-caring-how-make-...

11 of 17 10/20/25, 1:37 PM

https://www.redhat.com/en/authors/will-mcgrath
https://www.redhat.com/en/authors/will-mcgrath
https://www.redhat.com/en/authors/red-hat-performance-team
https://www.redhat.com/en/authors/red-hat-performance-team
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/ai-assisted-development-and-open-source-navigating-legal-issues
https://www.redhat.com/en/blog/how-red-hat-partners-are-powering-next-wave-enterprise-ai
https://www.redhat.com/en/blog/how-red-hat-partners-are-powering-next-wave-enterprise-ai
https://www.redhat.com/en/blog/how-red-hat-partners-are-powering-next-wave-enterprise-ai

